In this course, you will examine best practices for defensively coding JEE web applications, including XML processing and web services. You will repeatedly attack and then defend various assets associated with a fully functional web application. This hands-on approach drives home the mechanics of how to secure JEE web applications in the most practical of terms.

Skills Gained

- Potential sources for untrusted data
- Consequences for not properly handling untrusted data such as denial of service, cross-site scripting, and injections
- Test web applications with various attack techniques to determine the existence of and effectiveness of layered defenses
- Prevent and defend the many potential vulnerabilities associated with untrusted data
- Vulnerabilities of associated with authentication and authorization
- Detect, attack, and implement defenses for authentication and authorization functionality and services
- Dangers and mechanisms behind Cross-Site Scripting (XSS) and Injection attacks
- Detect, attack, and implement defenses against XSS and Injection attacks
- Concepts and terminology behind defensive, secure, coding
- Threat Modeling as a tool in identifying software vulnerabilities based on realistic threats against assets
- Perform both static code reviews and dynamic application testing to uncover vulnerabilities in Java-based web applications
- Design and develop strong, robust authentication and authorization implementations within the context of JEE
- Fundamentals of XML Digital Signature and XML Encryption as well as how they are used within the web services arena
- Detect, attack, and implement defenses for XML-based services and functionality
- Techniques and measures that can used to harden web and application servers as well as other components in your infrastructure

Who Can Benefit

Developers who wish to develop secure applications

Prerequisites

- Familiarity with Java and JEE is required
- Programming experience is highly recommended
- At least six months of Java and JEE working knowledge recommended
- You should have a working knowledge in the following topics or attend these courses as a prerequisite:
- Building JEE Web Applications (TT5100-JEE)
- Java 7 SE Programming for OO Experienced Developers (TT2100-J7)
- Java 7 Essentials for Object Oriented (OO) Developers (TT2101-J7)
- Java Web Essentials for OO Developers (TT5140)

Course Details

Introduction: Misconceptions
- Security: The Complete Picture
- TJX: Anatomy of a Disaster?
- Causes of Data Breaches
- Heartland - Slipping Past PCI Compliance
- Target's Painful Christmas
- Meaning of Being Compliant
- Verizon's 2013 Data Breach Report

Foundation
- Security Concepts
- Motivations: Costs and Standards
- Open Web Application Security Project
- Web Application Security Consortium
- CERT Secure Coding Standards
- Assets are the Targets
- Security Activities Cost Resources
- Threat Modeling
- System/Trust Boundaries
- Principles of Information Security
- Security Is a Lifecycle Issue
- Minimize Attack Surface Area
- Layers of Defense: Tenacious D
- Compartamentalize
- Consider All Application States
- Do Not Trust the Untrusted

Vulnerabilities
- Unvalidated Input
- Buffer Overflows
- Integer Arithmetic Vulnerabilities
- Unvalidated Input: From the Web
- Defending Trust Boundaries
- Whitelisting vs Blacklisting
• Overview of Regular Expressions
• Regular Expressions
• Working With Regexes in Java
• Applying Regular Expressions
• Broken Access Control
• Access Control Issues
• Excessive Privileges
• Insufficient Flow Control
• Unprotected URL/Resource Access
• Examples of Shabby Access Control
• Session and Session Management
• Broken Authentication
• Broken Quality/DoS
• Authentication Data
• Username/Password Protection
• Exploits Magnify Importance
• Handling Passwords on Server Side
• Single Sign-On (SSO)
• Cross Site Scripting (XSS)
• Persistent XSS
• Reflective XSS
• Best Practices for Untrusted Data
• Injection
• Injection Flaws
• SQL Injection Attacks Evolve
• Drill Down on Stored Procedures
• Other Forms of Injection
• Minimizing Injection Flaws
• Error Handling and Information Leakage
• Fingerprinting a Web Site
• Error-Handling Issues
• Logging In Support of Forensics
• Solving DLP Challenges
• Insecure Data Handling
• Protecting Data Can Mitigate Impact
• In-Memory Data Handling
• Secure Pipes
• Failures in the SSL Framework Are Appearing
• Insecure Configuration Management
• System Hardening: IA Mitigation
• Application Whitelisting
• Least Privileges
• Anti-Exploitation
• Secure Baseline
• Direct Object Access
• Dynamic Loading
• Race Conditions
• Direct Object References
• Spoofing, CSRF, and Redirects
• Name Resolution Vulnerabilities
• Fake Certs and Mobile Apps
• Targeted Spoofing Attacks
• Cross Site Request Forgeries (CSRF)
• CSRF Defenses are Entirely Server-Side
• Safe Redirects and Forwards

Best Practices
• Cryptography Overview
• Strong Encryption
• Message digests
• Keys and key management
• Certificate management
• Encryption/Decryption
• Understanding What's Important
• Common Vulnerabilities and Exposures
• OWASP Top Ten for 2013
• CWE/SANS Top 25 Most Dangerous SW Errors
• Monster Mitigations
• Strength Training: Project Teams/Developers
• Strength Training: IT Organizations

Defending XML, Services, and Rich Interfaces
• Defending XML
• XML Signature
• XML Encryption
• XML Attacks: Structure
• XML Attacks: Injection
• Safe XML Processing
• Defending Web Services
• Web Service Security Exposures
• When Transport-Level Alone is NOT Enough
• Message-Level Security
• WS-Security Roadmap
• XWSS Provides Many Functions
• Web Service Attacks
• Web Service Appliance/Gateways
• Defending Rich Interfaces and REST
• How Attackers See Rich Interfaces
• Attack Surface Changes When Moving to Rich Interfaces
• Bridging and its Potential Problems
• Three Basic Tenets for Safe Rich Interfaces
• OWASP REST Security Recommendations